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Preface

Let G be a topological transformation group on a

compact Hausdorff space Y and F(G;Y) its fixed point

set. The present paper is devoted to the study of the

cohomology structure of F(G;Y) in the following three

cases:

(1) G is the group Z2 of integers modulo 2

and Y has the mod 2 cohomology ring of the

real projective n-space.

(2) G is the group Zp of integers modulo p, wbere

p is an odd prime number, and Y has the mod

p cohomology structure of the lense

(2n+l)-space mod p.

(3) G is the circle group S' and Y has the

integral cohomology ring of the complex

projective n-space.

For simplicity, we shall call Y a cohomology real

projective n-space or a cohomology lense (2n+l)-space

mod p or a cohomology complex projective n-space if its

cohomology structure is that described in (1) or (2)

or (3). (Formal definitions of these notions will be

given later.)

Our study of the problem proposed above is

motivated by two recent theorems obtained separably

by P.A. Smith and C.T. Yang. In (16), Smith proved

,m- wft



that if Z2 acts effectively on the real projective

n-space, then the fixed point set is either empty, or

it has exactly two components c1 and c2, where each

ci is a cohomology real projective ni-space, i - 1,2,

and ni + n2 - n-l. Later in an unpublished work,

Yang proved that if S' acts differentiably on the

complex projective n-space, then the fixed point set is

non-empty, and has at most n+l components, say c€,...,

ck, k I n+l, where every ci is a cohomolofa complex

projective ni-space, i - 1,2,..., k, and n, + n2 + see

+nk - n-k+l. Thus roughly speaking, their theorems

start from the actual projective space, a real one in

Smith's case and a complex one in Yang's case, and end

up with asserting that the fixed point set is an union

of a finite number of cohosology projective spaces.

Naturally, as suggested by Smith, one would inquire

what is the situation when" in their hypothesis, the

actual projective spaces are replaced by the weaker

notion of cohomology projective spaces. This is

precisely the cases (1) and (3). Our main purpose is to

show that, under the more general setting of (1) and (3),

essentially the same conclusions obtained by Smith

and Yang still hold true. We also include a study of

case (2), which is the natural counterpart of case (1)

when p is odd.
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The key point for the proofs of Smith's and

Yang's theorems is to make use of the close relation

between the projective spaces and the spheres. There

exists a free action of Z2 on the n-sphere Sn with the

real projective n-space RPn as the orbit space.

Similarly, there exists a canonical free action of

S' on the (2n+l)-sphere s2n+l with the complex

projective n-space CPn as the orbit space. Thus

RPn can be viewed as the base space in a principal

bundle (Sn,RPn, Z2 ,fr ) and CPn as the base space in

a principal bundle (S2n+l, Cp", S', ?r), where in each

case P' denotes the projection from the total space to

the base space. Now if RI" is acted on by a group Z2,

it is possible to lift this action to Sn in the sense

that an action of Z2 on Sn can be defined so that the

projection IT : 5n -. RPn becomes equivariant. This

is so because 5n is the space of all paths of RPn;

hence any map of RPn into itself induces a map of the

space of all paths into itself in a natural fashion.

Similarly, if S' acts on CIn differentiably, a lifting

can also be constructed through analytic means. In

both cases, the idea is to shift the given action to

an action on spheres. Once this is done, the theorems

can be proved via a theorem of A, Borel (1). It is

then clear from what has been said that our problem can

be solved along the same line of thought if we can do



the following: First, to exhibit that cohomology

projective spaces are covered by cohosology spheres

as in the actual case; second, to show that this relation

permits one to lift an action (of a suitable group)

on the former to an action on the latter.

Our paper is divided into two parts. In Part 1, we

treat the cases (1) and (2) where the acting group is a

finite cyclic group of prime order. In part 2, we

treat the case (3) where the acting group is the circle

group. The schemes of development of these two parts

are entirely parallel to each other and the division is

made chiefly because of some technical differences between

handling a finite and an infinite group. Each part

begins with a preliminary section in which known results

needed later and the likes are collected. In Section

2 we first prove that if Zp acts freely on a cohomology

sphere mod p, then the orbit space is a cohomology

real projective space or a cohomology lense space

mod p according to whether p is even or odd. This

is, of course, more or less well-known. Much more

interesting is the fact that the converse is also true;

that is, if Zp acts freely on a connected compact

Hausdorff space X such that the orbit space X/Zp is a

cohomology real projective space or a cohomology lense

space mod p, then X itself must be a cohomology sphere

mod p. Similar results for the circle group are obtained
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in Section 6. These may be termed as the uniqueness

theorems which assert that cohomology spheres are

essentially the only spaces on which Zp or S' can

act freely to give a cohomology projective space as

the orbit space. The existence problem (i.e. to see

if every cohomology projective space can actually be

obtained as the orbit space of a suitable transformation

group on a cohomology sphere.) is studied in Section

3 and Section 7. In Section 3, we start from a connocted

compact Hausdorff space Y and then describe how, for

each non-zero element @weH'(Y;Zp), a principal bundle

(XYZp, Trr) can be constructed for which J'*:

H'(Y;Zp) ...+H'(X;Zp) takes m into zero. Owing to

this last property, we call X a cohomology covering

space of Y with respect to a . In fact, it is

constructed the same way as the classical covering

space. This construction also takes care of the lifting

problem automatically. Similarly, in Section 7, we

assume that Y is just compact Hausdorff and prove,

for each element ao of the integral cohomology group

H2 (y), zero or not, the existence of a principal bundle

(X,Y,S',rq) such that '7*: H2(y) -4 H2(X) takes ao

into zero. Unlike the previous case, this bundle is

now obtained indirectly with the aid of the obstruction

theory. Simple as this procedure is, the lack of an



explicit construction makes the lifting problem quite

difficult. Fortunately this difficulty can be overcome

by a recent result of T.E. Stewart (19) concerning

problems of this nature. Section 4 and Section 8 contain

the proofs of the main theorems of this paper.

The author of this paper expresses his gratitude

to Professor C.T. Yang, under whose supervision this

paper is written. The author also acknowledges with

pleasure his appreciation of the many inspiring

communications made to him by Mr. W.C. Hsiang and

Mr. S.S. Koh.
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Section 1. Preliminaries of Part 1

In this section we collect some algebraic and topolog-

ical facts that will be used later. Most of them are

well-known. Hence proofs will be omitted, although ref-

erences will be given in each cases

le 1. Let G be any finite group and A an Abelian group

on which G operates as a group of automorphisms. Then the

funotor H*(G; A) * L H8(G;A), called the cohomology of

G with coefficients in A# can be defined* We shall be con-

cerned only with the case when G is the group 5 of in-

tegers modulo a prime number p. In this case, the groups

H (Zp :A) can be calculated explicitly as

if amO;

If(;A} 4T"S/,T,-L A if s. 2 , n 0;

Tif/% if s 2n 19 n 09

where T is a generator of Zp# r a 1- Tv C. o Tit

AT uKerT and (rA a Kerr. If, in particular$ A a Zp9

then Z can operate only trivially on it and the above

formula will give H8s(Zp; Zp) a Zp for all s0 More-

over# there exists a product on H*(Zp;Zp) which aakes it

a ring. This ring can be described as follows: If p a 2,

we have

H (Z2; Z2) a Z2[i, ,

where Zrxj is the polynomial ring with coefficients in
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Za. The gradinS of H *(Z2 ; Z2 ) is obtcined by assigning

* as the degree of x (abbreviated deg x). If p#2, the

situation is a little more complicated. In this case we

have

H (zp; zap) . za X'i,

where lktal is the exterior algebra generated by a with

coefficients in and Z rxl is the polynomial ring with

coefficients in Zp. The grading of H* (Zp; 2 ) is obtained
by assigning deg a a 1 and deg x a 2 "5 ; Chap. XIMi.

le 2. In the ring H * (Zp; Zp)s p *2, we shall need

another cohomology operation beside the product, namely

the Bockstein operator * This is the coboundary
If H (Zp; 7 )-- Hs *'l (zp; Zp)

associated with the exact sequence of coefficient groups

0 -4Zp --* Zp2--3, Zp - 0

is an isomorphism if a is odd, and is trivial if a is

even and s *0. In particular, we may choose a, and x

such that k' (a) a xt

Suppose that A is a vector space over the field i

that the group Zp operates on A as a group of linear auto-

morphisms and that f is trivial.

1. 3. Lmma* If AT  ,. then O

kroof. For any'c.A, we have

Since ,hT * O, it follows that T ' -2(a). 0. Repeating

this argument, we have T 'r V * 0, 0 ." '& : 0, .,p

C< = 0.
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1,49 Dq~p Z dim AT (dimension of T)1.than

dim s 4 p-l

Proof* The sequenoe

0-0 A T- "A -.r4 -40

is exaot and henoe splits since 6" is a vector spaoe.

Choose a.4Osuh that A u Zpo 64&A If ct 4A is any

element of Ap there exist 'o E Zp and k A A such that

Similarly there exists f6 Zp and A such that

Substituting (2) in (1). we obtain

(3) a v .-o ( .) cg+ T24 )
Repeating this arguments we can find fv "' °e e

* p,. E A such that

(4) m 40 r + ft-

The last term in the right-hand side of (4) vanishes be-

cause T *F'"a a". 0 by assumption. Hence (4) reduces to

(5) CI

As CK is arbitrary# this means that the set Laeirelo.

r P-Lj is a set of generators of A, which proves the

lemmao

Suppose that X is a compact Hausdorff space and that G

acts on X as a transformation group. We denote the orbit

space by Z/G and the canonical projection by w : Z-P 1 /Ge

Let H (X;L) be the llexander-Wallace-Spanier oohomology
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of X with coefficient in a certain group L, Then G also

operates on H *(X;L) as a group of automorphisms so that

H *(G; H*(X;L)) would make sense. Let H* (X;L)G be the sub-

gfoup of invariant elements of H *(X;L)p i~e.

H*(X;L) G . t ( C H*(X;L) j g* (a) x Oxfor all G

In case G -a Zp, this subgroup will be denoted by H*(X;L)T*s

where T is a generator of 2 , The following well-known

theorem of the Leray-Cartan spectral sequence is the main

tool that will be used in Part 1 of this paper.
i, 5. Provohition. If finite grouD G acts freely

on a compact Hausdorff space X9 then there exists _A

spectral seguence (E,) whose E2 - term is siven kX

I3 H S(G; Ht (X;L)) ,

and whose 3 - term I associated with H*(X/G;L). 7

over, e h the following commutative diagrm:

Ht(XG;L -= I(X;L)~(X%41L a (x ; L

Where s# t ne canonical "eg hoiuomoErhisnl" L5 Pe 332]1

and i Is the inclusion.

A proof can be found, fur instance, in (3,

1. 6. Besides the Leray-Cartan spectral sequence, we

shall also occasionally make use of the Smith special 0o-

homology theory. Following Ls, a modern version of this
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theory can be dosoribod briefly as follows.

Let Z. act freely on X. Consider the Leray sheaf A

associated with the canonical projection : X - X/Zp. This

is a sheaf over X/Zp whose stalk on each yk X/Zp is given by

H ( (  y) ) a H0 ( V'(y) ), where zp is used as the cO-

efficient group. Now the group Zp operates on A as a group

of sheaf automorphisms so that we can consider the endo-
morphisms m-T and r-# V of A# where T is a generator

of Zp. Followiag usual convention# if one of them is de-

noted by p, the other will be denoted by F . The cohomology

groups H* (X/Zp; A) a I- Hs (X/Zp;? A) of X/Zp with

coefficients in thG sheaf of v A are called the Smith special

cohomolo&y groups which we will denote simply by H* (( ).

It can be shown that

0 - P A .k A .L eA -90

form an exact sequence of sheaves whuru if is the inclusion

and that H* (X/Zp; A) can bo identified canonically with

H (X). There is therefore an exact sequence

of conomology groups which is known as the Smith sequence.

Moreover, He (03) can be identifiad canonically with 1s (X/Zp)

and this identification carries is": Hs (9r) -HS(X) over to

oH S(X/Zp)--iHe(X). We have therefore two exact

sequencese
.. 6 e X/Zp) H #(X) T Ha (t) 6 C x/Zp)-.le .
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Lnd
..o (.)€, e z) x S sx/z P) Hs*lc () o:W o

Finally, it is not difficult to see that

T_ i-T* and
--..

1 ; pp. 40-42].

We call a compact Hausdorff space X _. cohomology

n-sphere over L if its cohomology H *(X; L) is the same as

that of the n-anhere, i.e.

L if a a 0, n;
H otherwise

We agree that the empty set is regarded as a cohomology

(-1) - sphere over L. A cohomology n-spher. over Zp will

also be called a cohomology n-sphere mod p and a cohomology

n-sphere over the group of integers Z will also be called

an integral cohoiaology n-sphore.

1. 7. Proposition. If X is a cohomology n-sphere mod p

on which the group Zp acts, then the fixed point set F (Zp;X)

is a cohomology r-sphei mod p for some -1 <r I no Moreover,

n-r I& oven if p is odd.

This is a well-known t:eorom of P. A. Snith, originally

formulated in terms of homology under tne assumption that X

has finite Lebusguo covering dimension 1173 0 It was sub-

soquently shown by L. Mann 1141 , also in terms of homology,

that the dimensionality condition can be removed. The above

version is just the dual form of Mann's rosult.
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l. e, rir.llJ±, "vo shall neod one more tLeorsm concerning

the action of Zp x Zp on a cohomology n-sphore mod p, X.

The fixed point sot F (ZP x Zp; X) is of courso still a

oohomology sphere mod pp say of dimension r. Besides,

Zp x Zp contains p-1 non-trivia cyclic groups Nig izO, l,...,p.

Bt 1.7 each F(N i;X) is a cohowology nj-sphere mod p for

some nip i-Ol,...,p.

1. g. Propos.tion, Lot Zp x Zp act on a cohomology

n-Aphere mod p, X. lot Ni, ni, i.O,l,...,p and r be as in

1.8. Then

L (ni-r) z n-r,

Tis proposition can be found in C1; p. 1751 where X is

assumed to hvo efinite cohomology dimonsion over Zp. Again

this condition can be removed. Indeeds, tho finita dimension-

ality condition is usid only to assure that H*(F(Zp x Zp;X);Z).

if * (X/z x Zj; Zp), H* (F (Ni; X); Zp) and H *(X/Ni; Zp),

isO, l,...,p, have finite dimunsions whun H* (; Zp) does.

By Mann's rosult 114;,1, this is truu without such

restriction.
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Saotioi 2. Cohomology raal projective spaces and oohomology

lense spaces*

Throughout this section, X is e compact Hausdorff space

on which Zp acts freely. Cohomology always has as the

coefficient group. 'We shall distinguish the case p = 2 from

other primes; so we shall write out tale cofficient group

in the cohomology for this particular case and H *(X) will

denote H *(X;Zp) only when p 4 2.

2. 1. Definition. A compact Hausdorff space Y is said to

be a oohomolowv real orojoctive n-spaco if the cohomology

ring H* (Y;Z 2 ) is given by

H *(Y;Z 2 ) u 7w 1xJ / (xnAl) deg x a 19

whore Z2 Lx) is the polynomial ring with coofficionts in Z2

and (xn'l) is the ideal kenirated by xn +l

2. 2. Definition A compact Hausdorff space Y is said

to be a cohomologv lenso (2n+l)-sDace mod p if the cohomol-

ogy ri H (Y) is given by

H*(Y) . [a) e Zptx]/(xn"l), deg a a 1, dog x = 2,

and if 0' (a) a x whore g" is the Bockstain coboundary
: H1 (Y). -#I-(Y) .

Notico that the anti-podal nap (a map in this paper is

always meant to be a continuous one) on the n-sphere Sn defines

a frec action of Z2 on Sn for wiich the orbit space is the

real projective n-space whose mod 2 cohomology is exactly

given by 2.1 Similarly, if wQ lot

S2n 1 a (Zoa 009 9 Zn) I 1z, 2 = 1, zi complex numbrslp
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then the iaap

$2n 1..w S2nl

(zo, ... , Zn) -+ (ZoO 2 1/p, .. , zneei/P) p

dofLcs a free aotion of Zp on S2n +1 for which the orbit

space is the lense (2ntl)-spac mod p [151 whmse mod p

oohomology is exectly given by 2.2. These motivate the

definitions just givon. More generally, we have the following

2. 3. Proposition* If p X 2 A" X is a cohomology (2n~l)-

sphere mod p, thn X/Zp is _e oohomology lense (2n~l)-s eo

mod p.

Proof. We observe first that

H (Z/Zp) a 0 for all sv2n1..

This follows from 114;].

Consider now the Lrey-Cartan spietral sequence (Er) of

1.5. As
Es2t I (Zp; Ht(X)) = 0 for all t 4 0, 2n l,

thera coxists an exact seQuenco
S-2n-2, 2nd . 4;f(s-2n-l, 2n#lS2... - 0soH (X/zp) --WBAW ,

where @s is tha canonical :dre homomorphism 5; p. 326 i.

This gives immediately that

is an isonmorphism for all O. c S2n. For s = Ln.1 we have

tie exact saquence

O .E-I E 2 1?'-- (X/zp) --w Y 2 - 2
-- line2 (X/Zp) a 0o

Since EO 2n l E 2n .'30 EO,2nl -V E'2' 0 must
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neoosscA ily b- an isomorphiasm Hence is also an

isomorphism. The desired cohomology structure of X/Z. thon

follows from 1.2.

In exactly the same way, one can prove

2o 4. Proposition. ;f p a 2 and X is a cohomology

n-sphere mod 2, then X/Z2 is a cohomology real Projective

n-amac o

The main purpose of th3 prosent suction is to prove the

converses of the preceding two propositions.

2. 5. Theorem. If p 1 2, X is connected and X/Zp i a

cohomology lunse (2n+l) -Saco mod p, then X is a cohomology

(2n~l)-sphere mod p.

Proof. In the Lcray-Cartan spectral sequunce (Er) of 1.5,

we first claim

(1) $: S 0 - -P H(X/Z p ) is an isomorphism for all

1 -a S 2ni1.

t2) 11f: HB(X/Zp) -- 118(X) is trivial for all s-1.

There exists an exact sequunce of lower ters

(3) 0 l.9 E H1(X/Zp) W 0 : F2 1 (X/Z,)

[5; P. 3283. If n a 0, (1) and (2) follow diroctly from the

exactness of (3). Suppose that n 0. Sinoe X is connocted,

2 E~' f. 0 H (Zp; I (X)) Z le Zp Zp).
Let a 0 b a gonwrator of E1 a' (a) is a generator

e a 2. 2 Sag

of H (X/Z ), siaco r zust nucessarily be Fn isomiorphism.

According to 1.2, x @ '(a) is e genorptor of E2Oand in

view of definition 2.2 Lnd the assumption that nO,



W *LoP (a) a (o (a) z ' (a) 0,o

It follows that #is also an isomorphism. Since a and x

generato the ring i *(Zp; Zp), (1) is proved. From the ezact-

ness of (Z), we have

11r ( 0 (a) 0
so that

w*(4)(X 1c): "z'* £+4 r.'~a;(W,(t)0.

Since (, (a) and 01 (x) gerieratb tho ring H*(X/Zp), (2)

is proved.

Let us draw some conclusions from (1) and (2). By (2)

and 1.6, we see that
P.0 *

(4) X T : If (X) --,H(X) is trivial for all s.l,

whore, as we recall, T denotos 9 generator of Zp and T*:

HIS (X) -v H (X) is the honaomorphism induced by T. From (1),

wo d3duco that EsA0 a ESI0  for all 1S s* 2nl. This implies

that none of E8109 I's 2ndl, r'.2, can hav any non-zero

coboundins element. Honco

(5) 3841 - s+l is trivial for all 1 s t2ntl.

Moreover, since

dim If (x/zp) . £ dim3 ,

and, b? (1),
H5 (X/Z) . I ,Z.0

*Im ,cooB le.-s!2n*l

it follows that
0,8s

(6) EO a 0 for all i* s_ 2ntl.

We now proceed to provu by induction that
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(7) Hs(Z) a C for all ls4L2nl.

For n a 0, theri is nothing to prove. Therefore we assume here

that nO. By (1) and the exactness of (3), we have O 0 O.T*

By 1.1 and 1.5, this means HI(X)T a 0 so that by (4) and lemma

1.3 we have HI(X) a 0. Suppose it has been proved that Hi(X) z0

for all 111 <s2n#lo Consider the differentials

dr: 0 s -- % Er

Clearly dr w 0 for all r s9l If lrCs.l, then l s-r+ls.

By induction hypothesis wo have

Ir.-r*1 HF(Z; s'r4l(X)) . 0

So that r,2 s -r * l u 0. Hence dr: Z05 -o Er. rS -1'l is trivial
0,s .. sl, is

for all r a2 and r # sil. But del: X5,6 zsl i

trivial by (5). We can ther-foro conclude that dr: 0s -

jrFs-r4l  is trivial for all r 32, or oquivaluntly that
r

B .Eoa a E018, By ll, 1.5 and (6), this gives

ossT*  O 3 Bos =
l~sZ)T 2 -c

Hence again by (4) und lemma 1.3, ve conclude that HO(X) a O

Next, we take up the case when s 2n+l, A6ain we consider

tn differentials.

dr: E0 2I n.., Er,2n+2-r
r

With the aid of (M), which has jusL been proved, it is easily

seon that dr 0,2n14 3 r,2+2-r is trivial for all rj 2 and
_O,2n~l EO en~l = OPen~l  O

r 2n,2. We have therefore 22n 2 d E 2 n,3 =

where the lest uquality holds because of (6). But by def-
30,2n41l l0,2n~l d1 ,* .2n*2.0~

inition, Z 2n a Ker E 2n2 E 2n. ) so that den e:

EOn+l 2n:0 is e Laononuorphism. Similarly consider the
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differentials

dr 2nt2-r,r-1 _ 2n+2,o
r r

Again it is easily seens with the help of (7), that dr is

trivial for all r 2 and r 2n42. We have therefore
Ee , ne0 ,2n+2, * -n ni,0
,2n2,.E and Z 2fn2 0 a E n2 C H2n+2(x/zp) . 0.

But by definition,
2f 2, 0 2n+2 0 (0,2nl 4 n2,0
2 1 3  * 2nk / (I~n+2 4 ~~~b2nt-2'

it foll,2now tt, 3nn 0 is an epimorphismit follows that dn2: Z2n2 -* 2n,2

and hence an isomorphism, since it is alrindy known to be 3

monomorphism. We have thus proved that E0 
2n l . n12

L2n*2 0 2n*2,

By (4) and lemma 1.4, we deduce that

dim H X) S p-l.

Of course this does not determine H2n l (X) coipletely yet.

Ie shall come back to it after determinrg 11S(x) for s , nil.

Now we claim that H8 (X) w 0 for all so2nel. Using tn3 Smith

sequence of 1.6 we have, for s 2 I l, the oxact sequences

o i H(x/z,) .-. H(X) --**Hs( ) -H (X/Zp) P 0 end
• .- v Hs (T) ww HIfW -- P ls (XI" -0o

From these w3 see immedistaly that

;ro t* w1 -T

is an ipimorphism on Hs(X) for so2n+l. Hence
He(X) . (1-T*) Hs(X)

u (1-T ) 2 HS(X)

, (I.T*)P-1 HS(X)
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* ( . i HB CX)

* 0 for all sv2nle.

Finally lot us returt, to I n1 l (X). Since no-; v'e have shown

that dim H (X) Co 9 tho Eulr-charectaristic formula of Floyd

(of. 1; p. 40)
@e @@

(-1) s dim f(X) = p E (-I)s dim HS(X/zp)
Sao 32•0

can be applied. In our caso, this reduces to

1 - dim jfHn~l (X) -0 or

H2n+l (x) * zp.

Thic completes the proof of 2.5.

The next theorem is 3nalogous to 2.5, but the proof ic much

simpler.

2.6. Theorem. If p a 2, X 11 connected end X/Z2 is a

oohomology roal prolctivo n-space, then X is a cohomology

n-Apherr mod 2.

Proof. Just as in 2.5, using the exact s3quonce (3) ead

definition 2.1, one deduos that

(1) 'r *: ' P(X/-72; Z2 ) -' Hs(X; Z2 )

is trivial for all s2.l1 Now Consider the Smith sequence of

1.6. Owin6 to the fact that for Z2 we have t -9, tht Smith

sequence reducas in this cose to

-Hs (Z 2 ;Z2 ) Hs(X;Z 2 ) t FO (x/Z2,Z 2 )

0.H s 1 (X/Zz;Z 2 ) ..

From this and (1) we 3onclude immodiately 'hat
Hif s . o, n

othurwisH
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2.70 Remik.* In the proof of E.5 and 2.6, we have employed

both the methods of spectral sequence and Smith special coho-

mology theory. It would be desirable to give a proof using e

purely spectral sequence ar6 ument. This can be done for 2.6.

One can first prove by induction that H6 (X;Z 2 ) a 0 for all

1 *s Cn in the same way us 2.5. Next, still in the same way

as 2.5, one deduces that dim lln(x;z 2 )_ p-1 % 2-1 = 1. But

this time it would determine Hn(X;Z 2 ) without waitirg for the

information of H3(X;Z2) for sno Then, one can prove inductive-

ly (by aesuming that Hn J(X;Z2 ) a 0 for all lti&d ) the

existencu of in exact sequence of The form

0 2ORi n  .n+i ~l - E0 . n-i 4 Ei l,n 6t Eni+2,O
i 2" 2 2 02 2

(of, 6.3 of Part 2)e Since EiI n 2 R n+ a w know• • s E2 2 ,weko :

is an isomorphism. By thu product structure of H*(Z2 ;Z2 ), one

can deduce that @., is also an isomorphis,, which iraplies

that ECnnXi Hn'(X;Z,)T* , 0 and heinco Hn i(X;Z2 ) . O.

For p 0 2, c similar exact sequeace can elso be ccnstrticted.

But we er; not able to datrmino the product and Bockstein

operations of H (Z;;H2 n*I(X)), sinco our knowledgo on n4lcx)

comes later. This sooaw to be the reason for the breakdown

of this method waon p % 2.
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Section 3. Cohomology covuring spaces and lifting of nctions

In the preceding section, w snowed that if a free action of

Zp on a connooted compact Hausdorff space X is eivun such that

the orbit space X/Zp is known to bo a cohomology real projective

space or a cohomology lense space mod p, then X is itself a

cohomology sphere mod p. We wish to know now thet given a

cohomology real projuctivu space or a cohorology lensO space

Y mod p, can we always find a free action of Zp on a connected

compact Hausdorff space X such that the orbit space is Y?

More generally, we wish to investigate the quosticn that given

a connected compact Hausdorff space Y, when could Y bo

homoomorphic to the orbit space of a free action of Z on a

connected compact Hsusdorff space X. We shall show in this

section that under a rather mild condition such aii action can

actually bo constructed. The muthod rusembles ve.ry much to

the construction of the universal covering space of a pathwise

connected, locally pathwiso connected and locally pathwise

simply connected space with the dual of the first cohomology

group playing the role of the fundamental group. Lot us agree

again that in this section all cohomology groups have Zp as the

coufficiont group, but no distinction will be made for p to be

even or odd.

3. 1. Suppose that Y is & connected compact !ausdorff

space and tnt C H1(Y) is a non-zoro vlemunt. Lot

f: y2 - Zp be a 1- cocycle ruprusunting w . Then there Axists

an open covering a of Y such that
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(1) (yO, y 2 ) a f(yoyl) - f(yl'y2 ) whenever YOYlY2 4 VCA.

Fix a point bC Y. By a -1hein we mean a finite

sequence (ilaO of points of Y such that - is

contained in som Vi EVfor all i a 1,2,..opn. By a 'V-ohain

with base point b we mean aqf-ohain (y ) n such that Youb.
± ±'0

The set of all VT-chains with base point b is denoted by .

Two elements (yi)ino and (y') M of Xare said to be

equivalent if

(i) Yn a ym and
(ii) f(yi-lYi) • ,f(y l~yD.

This is obviously an equivalence relation. The quotient set

of X under this equivalence relation is denoted by X and the

equivalence class of (yi) i 0 4 is denoted byryil n

Also, the functionW: X-9Y Civen byr([yi. ±no) sYn is clearly

well-defined.

Now we topologize X as follows. For each x M £YiJ ino

of X, the set

S (lr(x)) !B(P(x))(r(x)( B(w(x)), B (1(x)) open in Y
L

and B(1(k) )CV fcr some VC'LVI forms a base of neighborhoods

of WW)C Y. To each B(/r(x))( (F(x)), efine

* (x) I jL. )

It is streightforward to verify that a topology 7odn be
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dof inud on X for whioh

P a B) (x) I B ( x )1(.E (x))}

forms a base of open neighborhoods of xo

The topology .3 is Hausdorff* In fact# lot x a (yi 10

and x. [Y0]j be two distinct points of x. IfrT(x) lW(x'),

we may tako B ('K(x)) J(Tr(x)) and B' (W(x')) suc "

B (W.(x))'B' (lr(x')) u.4 It is than clear that B* (x)A

B (x') * ,,o If r (X) a Tr (x') Y. we take any

B( S (y) If 3" yk I k f B (x) A B* x')

w. have by definition • e

f (yij.y 1 ) *- f(y,y9)+ .f(y"py ) a 0 and
'fCy-Yt;py) +.f(ySy).. ,yk, Yk-l% 0

This gives

IECyIlyL) f , (yj:1 y'),
contradicting the assumption that x 0 x'.

It is easily seen tnat under tho topology 3 1 : 1- Y

becomes a coL.tinuous map. In fact, for any x, X and

B(W (x))4EP (w(x)), W7maps B*(x) home omorphically onto

B(Wr(x)). Henco &s e local homzemorphism. Loreovur, there

exists an open covoringflof I sucn that every V*c. is

mapped b5 W" homoomorpticlly onto soL E VEO

3.2o Lomma. Fcr .jach yc Y, W-(y) has exactly p points@

Proof. It is uasily suon toat the cardinal of T"(y) is

independent of y; hince it sufficos to consider the case when

y a b. Tho function Z b) - . defined by 0 (ty(ij )-i-

. fCyi~lYi), whore iyin '(T Cb), is obviously inj.otivae

Morjovur, the imLgo off iz c subgroup of Zp. For€n,_€Y r"- n+mi wi'"ro
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'urthermorop 4' ((b]) a ft(bob) a 0. This subgroup must be

either Zpor 0. If it is zero, we define a 0-oochain

g: Y-.9 Z p by g(y) a E;L6f(yi1 15 yi)# where (y ) i_ is any

( r-chain with base point b such that Ynay' Such a (%FV-chain

exists (;A;noe Y is connected) and g is well-d~efined* If

yy V E Af , e l'eve

bocause w~e can represent g(y') by Lf(y oy 4- (yoy')

g(:-.)+f(yyI). But this means I is coboundingg contradicting

the assumption thlat cA 0 0. Hen~ce the leiwma is proved.

Notice that 3.2 siso implies that A-, is compat.

3.3. Lema The homoudorphiam TT% : Hl(W -1 H1(X

inue by 1! : X -aY maps :w int zeroe

Proof. The function h: X -4zp given by h( [yii.)

-r.- f(yi-1,Yi) is clearly a w~el-defined 0-coctain cn X*
If x ~i . and i' . L aJJore oontained in soino B (x")

where x'. (Yj)kko.
According to (3) we have

Hence

f~yiyi-1 f~yty, f(Y"1 Ym-f~ytyn
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or

h(x) - h(x') u f(ITzx),1T(x'))

This means precisely that7TC) a 0; hence the lemma is proved.

By e I T -A we mean a finite sequeice (xi).0 of points

of X such that xi..i#Xil is contained in some Vi * sV for

all iul,2j...,n* Anftohain (xi 1), 0 is said to cover a

V-ohain (Yi) 0 ifn r(xi) a for all i-0,l, o.ono Notice

that the function h defined in 3.3 has the following property:

(4) If ar tchain (x,) 0 covers a-cohain (Yj)i 0 then
f(yi.lsyi) : h(x0)-h(xn).l

3.4. Lemma. (Chain liftinS property and monodromy

___ a I )oint xEsi (y 0 ),property) Given 'W-ohain (yi)in,,0 nd suc hait xiy),

there exists 9 uniauefV'_- ; j( t (i ) so

covers (yi) j!o ad xo a x. (yi)io a (yj) mo are fwo

OW_.hn such tha Yo a Y,; "n& Yn a y1;, (x,) 0 noad(f
ere two'F-cheins coverirg. (yi) 1 0 _nd (Yj)jI rasreotiv

such that xo n  xm' ;f and 22 if

£. f(yi- 1 9Yj) I f~y-f

Proof, The first part of the lenma is an immediate

consequence of the fact that w? is b local houeomo'phism of

X onto Y. For the second part, if xn = xm, we have

J, f(Yi-lYi) z h(x0)-n(Zn) a h(xo) -h(x )

0,% 1 Y).,, then by (4
Conversely, if C f(Y..,Y' , then by (4)

w-3 have h(xo)-h(xn) a h(x0)-h(x.) and hence h(xn) w h(4)

since x 0 a x0 . Since 7r"(xn) =-'n x y. %W(xm), we have
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xn . xI by the definition of h end (2).

3.5. Lemmas There exists a free sotion of Zpon X

such that X/Zp a Y andr coincides with the canonical
p -

Dro~leotion.

Proof* Define a function S on 1TT(b) by S(x) -

(e(x}l), where i: %'(b)-4 Zp is the function defined in

3.2. Let us extend S as follows. If x n tYi3i~o is an

arbitrary point of X, we let (xi) i-o be a (Vtohain covering

(Yi)ian such that x0 . s(fb)) and then define S(x) zxnl

This is well-defined in view of lemma 3.4. Now let us prove

that S is continuous. Take a noighborhood B *(xn) of xn 8 S(x),

where B(yn) is a neighborhood of W(xn) z1T(x) 2 Yn- If

XS B *(x), then x' can be represented by [yijn m where

Yn+1 *W(x')(B(Yn)o Sincewmaps B*(xn) homeomorphioally

onto B(yn), there exists xn.1 4 B*(xn) such that W(xn.) u

Ynl o It follows that (xi)?l0 is & e~ hain which coversn~l
ni 1 with x0 = S((b)). By definition we have then S(x')

U X n 1 C B *(xn)o It i clear from the definition of S that

we have h(S(x))-h(x) a h(Sjb)) so that h(x)-h(SP(x)) -

p h(S4b)) a 0. Since ll(x) all(SP(x)), we must have SP(x) = x.

Hence S is a periodic map on X with period p. Finally, S has

no fixed point, in fact, for any x SX we have h(x)-h(S(x)) 1

-h(SbJ) a 1 0 0; tience x $ S(x) for eil xGX.

3.6. Lemma. I is connected.

Proof. Consider the exact sequence

- o 1 2 0 2 (y)0- EI () 24% 2 -A
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of the Leray-Carten sleotr l sequence (of. (3) of 2.5).

By 1.5 and lemma 3o3, we have dim (Ker A le. Therefore by

1.1 cnd the exactness of the above sequence we have

dim rH0(X)/1 O(x) . dim El3,0 a dim (Ker T- )01l.

On the other hand, we have obvioLsly E0o0  00 HO(Y).

By 1.1, 1.5 and the connectedness of Y, this gives

(5) dim H(X)S* z dim EO&0 k 1.

But (5) means that TH0 (X) is a hyperplane of HO(X) so that

dim H(X)/t 10 (.X) .l.

It follows that

dim H°(X)/WHO(X) - dim HO (X)/, H0 (X) - dim

O(W)/t HO(t) Oior G" H(X) a HO(X). That is to say,
.1LS * is trivial on H0(X). By (5) and lemma 1.4, we have
* so

(6) dim H0(X) C p-1.

Hence X has at most p-1 components.

Suppose that X is not connected* Let C be a component

of X. We can not have S(C) a C. For if so, WT (C) would be

a proper non-empty subset of Y. As X has only a finite

number of components, C is both open and closed in X and so is

T (C) in Y since 7r is an open map and X is compact. This

contradicts the fact that Y is connect3d. Therefore we must

have S(C $ C and hence X has ot lenst p oomponents, contra -

dicting (6).

3.7. Remark* Vie notice that in the proof of 3.6, we

have also shown that dim (Keri W ) z 1. In other words,

Ker "*is precisely the 1-dimensional subspace of H(Y) gener-

ated byX 9
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Collecting 3.1 - 3.7, we have proved the following theorem.

3.8. Theorem* If Y is a connected compact Hausdorff

apace, then for every non-zero element a f HI(Y) there exists

a connected compact Hausdorff spoe X D a free action of

og X such that X/Zp a Y and the kernel of the homomorph..sm

W : HI(Y)-) HI(x) induced by the oanonioal Droleotion

IT : X-4 Y J precisely, the 1- gm in subspace generated

The space X of 3.8 may be 3alled a cohomclogy covering

s of Yo This space can actually be choracterized abstract-

ly. The techniques involved consist largely of repetitions

of the arguments used in 3.1 through 3.6. So we are content

to give here a brief sketch.

3.9. 22finition. Let Y be a connected compact

Hausdorff space and a a non-zero olexent of HI(Y). By a

o o covoringasce of Y with respect tow- we mean a

compact Hausdorff space X and a freo action of k- on X such

that X/Zp g Y and the kernel of the nomomorphismff*:Hl(Y) -& HI(X)

induced by the canonical projectionW: X-4 Y is precisely the

1-dimensional subspace generated by , .

3.10. Let Yget be the same as in 3.9 and X a cohoLology

covering space of Y with respect toOC * ;ust as 3.6, we can

prove first that X is connected. Usina the condition that

II*Av) a 0 and the foat that W*is a local homeomorphism of

X onto Y, we can find an open coveringN-of Y, a 1-oooycle

f on Y, an opwn coveringt * of X and a 0-cochlin h on X such
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that (1) and (4) holcs and such that each Vill is mapped

homeomorphically onto somu V ( by ,0 a With these we can use

the notions of V-chains, V -ohsins cnd covering chains.

Because of tho condition that I( 40 and the connectedness of X,

we can prove the chrin lifting proparty and the iacnodromy

property of 3.4. After this is establisned, the following

uniqueness theoreia can be proved by standard orgument.

3. 11. Theorem. Lot Y be a coniected comonct Hausdorff

space and PA a non-zero eleoent of Hl(Y). If X an( I' are

two cohomologv coverin spaces of Y with respect to r, then

thera oxists en equivariant homeomorgaism 0: X - X' of X

onto X'. More explicitly, we hove the following commutative

dirgram
X I_ L '

Where r. .-nd .' are the ccnonicl projections. Furthermore,

if X6 and Xo ' cra a two pr3a&,siinod points of I an._.d X'
such that 7T (xo) . r' (xo'), then D ctn be choseL in buch a w~y

that e (;o) - x O, an it ib corpletely deterainied :U this

condition.

3. 12. Ajnin let Y be L. connected coL.I'cct H&usdorff

spnce, o( a non-zero clomen-i of dl(Y) nd a concnuoloGy

covcrin space of Y with respect toe. By definition there

exists - fre nction of Z on X which we represnt by L per-

iodic map & (see 3.5) cn cnll it thQ tCeck-trnmforiation '.
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Let us assume now that the space Y itself carries an action of

Zp; in other words, we have a periodic transformation T: Y -*Y

of period p. A poriodic mapT: X-oX of period p is said to be

a liftinn of T if it conmutes with tha canonical projection

17: X -4Y, i.e if 11or_ T oW lie wish to atudy now muon such

n lifting exists. To do this, let us adjust iche construction

of 3.1 under the followin6 2ssumptions:

1. There is rni nction of Z. of Y, i.e we heve a periodic map

T: Y -Y of period p.

2. is invariant undur T*, i.e T*(O) -_K, whore

T*: HI(Y) .. j HI(Y) is the honioiaorphisuL induced by T.

3. The fixed point aet of T is noii-omjty, i.e there exists

bY such that T(b) a b.

Just Ls in 3.1, let f: y2 -t ZP b a 1-cocycle reprosentine

* Usin6 condition 2, it is ersily saii tit there exists ai,

oer. covering of Y and r -cochsin k: Y-4 Z with the )rop-

erties that (1) of 3.1 iolks, othat T(V) tJ for cil V ( ^J-.nd

that

(1) k(y)-k(y') z f(z,y')-f(T(.),T(,')) .,;h,. nuver

YyIy' V'C'U.

Construct the %et 'X and tnh space :, in tue seia3 way '; 3.1, but

with the agreemont rhizt thu basu poiint b is tnken to be a fixed

point of T. Then K is a o.o, ilogy coverin{, sxacc of Y :ith

respct to e . jL.v clz'rly tho functior. 1 : (n) -.- 4 (T( i)) i

raaps)( into itself. k;oroover, f ' Yi i:O = y M, then,

by (1), wo havo
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f (T(y 1 1 ),T(ji)) f (y,y) - (1c(b) - (Yn)

* ,f(Tl. ly 4 ),T(: j ))

Hene V( Y i 120 )  £T( yi)) in is a -iell-defined function

of I into itself. It is easily seen that T : X--# X is a

periodic transformation of period p and that it is indeed a

lifting of T.

We claim that T commuutes with S, where S is the deck-

transforwation defined in 3.5. Let S(Lb)) -[Yi n Then

Yn u W (S[b]) . b. By (1), we have

f(Yi.l, Y -) - f(T(yi_l)# T(yi)) : k(b) - k(b) = 0;

in other words, T (S bJ) . 6(bJ* No' if x = Ly JjO is an

arbitrary point of X and (x,) 'a is the'V-chain covering

Osuch tat s( [b) ), then S(X) * But

m(O) is a V -hain covering (T(y M such that

T(x o ) . '(S(Cb)) S((bl).

By the definition of S we inve chen m() : S(IT(yj)] )

that is T o S (x) a S o (x).

3.13. Proposition. Suppose that Y is a connected compact

spece, that T is o. periodic transformiagon on Y of period p

such that the fixed point set of T is non-empty, that e is a

non-zero elunent of lI(Y) which is invypriant under T* and that

X is a cohomiology covering 3Race of Y wibh respect to.

Then T hcs a liftink T Ln X wihich conzautes with the deck-

transforgction S on X.
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Proof. 3.13 is just proved in 3.12 when X is the

specific oohomology ooverin6 space constructed there. The

case when X is an arbitrary oohonology coverin& space of Y

with respect to I then follows from the uniqueness theorem

of 3.11,
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Section 4. Fixed point set of an action of Zp on a

oohomology real projective space or on a cohoiaology lense

space mod p

In this section we discuss the fixed point set of an

action of Zp on a cohomology real projective space or on a

cohomology lense space mod p. Our object is to show that each

component of the fixed point set of such an action inherits the

same cohomolo~y structure of the spaco itself. All the

machineries needed have 3lreedy been built up in the previous

two sections and it is now just a matter of patchins them up.

4.1. Theorem. Suppose that Y ic a cohcaoloLy lense

(2n-1) - space Liod p on which Zp acts, where p g 2. Then the

fixed ooint set F hs at most p omonents nd ry omponent

of F is e cohomolo0y lens ao wod p. if F has K componvnts

CI,...,C0, l1lip, and Ci is a cohoLuology lonso (Zni+l)-Space

mod p, i 1 1,2,...,k, then

ni a n-kl.

Proof. 10 May Lssuiau that F is non-umpty, for

otherwise 4.1 is trivial. Let T be a teiarator of Zp and

a a generator of 1Il(Y) a Zp. Let X b. L conomolory covering

space of Y with reepect toc. Such an & exists by 3.8 and

according to 2.5 X is a coiioolo.ogy (2n4l) -sphere rood p.

Since C is nuoess.rily invarint under T*, by 2.13 T hos a

lifting T on X whiich coammutes with the deck-traisf rrmation 0

on X (cf. 3.12). It follows that T and S to,eth-r define an

action of Zp x Zp on X. Let J be thi Cut of all non-triviil
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cyclic subgroups N of Zp x Zp such that the fixed point set

Y(N) is non-empty. Since Zp x Zp contains only p+l non-trivial

cyclic subgroups and since the cyclic subgroup 6enerated by

(Sl), which we denote by NO, acts freely on X, 10 A j4

HenceY has at most p elements. On the otnr hand, we have

LIT (F(N)) . F; hence.iis non-empty. Let NI,...,Nk , l t kip,

be the elements of.i. By 1.7, F(Ni) is a cohomology ri-sphere

mod p end ri is odd, say riz2ni*l, i-l,2,...,k. Let Ci-.

A(F(Ni)), ial,2,...,k; then Ci is connected since F(Ni) is.

Moreover, it is easily seen that CjACj = 4 if i j J. Since
K r IN k i

F . 'W (F(N)) C t) Ci, we conclude tnat XCi i s

precisely the set of all components of F. Now the cyclic

group No ects on F(Ni), freely of course, and Ci is just the

orbit space of this cction. Therefore, by 2.3, Ci is a

cohomology lense (2ni~l) - space mod p. Finally, by 1.9,

we have
.1,[(2ni4l) - (-1)3 -(2n'l) - (-1),

wNhich reduces exactly to

.In i u n-k*l.

In exoctly tho sam i way, one can also prove

4.2. Theorem. Suipoce tact Y is a soliomnlogy :eal ,oro-

Jeative n-sce on .,-hich Z2 acts. Then h_.. fixed point set F

h3s at most 2 comuponents and jaoh component of F is a cohomology

rerl projective sPOco. If' F has I compononts C1,...,Ck, l.1kE2,

and Ci Is o cohomology real ProJective ni-bpae, izl,2,...,k,

then K
-- n i a n-k4-1.



PART 2

Section 5. Preliminaries of Part 2

As in section 1, the present section is a collection

of preliminary results to be used in the following sec-

tions.
5,1 Let Q be a compact Lie group acting on a

compact Hausdorff space X, For each xeX, Gx -
ge*a I gx - x3 is a closed subgroup of 0 called the

isotropic subgroup at x and the set 0(x) -fgxi g* G3 cX
is called an orbit. The conjugate class [0 x ] of 0x in 0

depends only on the orbit 0(x); hence it is called an

orbit type. We say that the action has finite orbit

structure i the set ([ xeX} Is finite. In
case that a is abelian (such as the circle group
8 ), it is the same to say that there are only a finite
number of distinct isotropic subgroups, [1; p. 104].

5.2 Let X be a locally compact space and L a

principal ideal domain. The cohomology dimension of X

over L, denoted by dim X is defined by

diMLX 'E n if Hn + (U;L) - U for all open subset UCX,

where Hc (U;L) - L He (U;L) is the Alexander - Wa'lace

Spanier cohomology of U with coefficients in L and wih
compact support. X is sai to have a finite cohomology

dimension over L if dimLX( t. for some n. In symbols,

we write dimLX < o .

The function dimL X is introduced by H. Cohen (7].
It is known to have the following properties:

(i) dim X I dim S, where Z denotes the ring of

integers,

(ii) dim L X - Max (dim L A, dim LX-A) for any closed
subset ACX.

30
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(iii) dimL(XxY) f dimtX + dimY, where Y is a

locally compact space and XXY is the product

space of X and Y*

(iv) If X is a compact Hausdorff space of finite

Lebesque covering dimension n, then dim ZX = n.
Let (x Y, S 1, ) be a principal bundle in the sense

of [18], where the fihre S1 is the circle group, the base

space Y is compact Hausdorff and dimLY too , By the

properties (i) - (iv) listed above, it is easily seen

that dimLX < -0

5.3. Proposition. Let 0 be a compact Lie group

acting on a compact Hausdorff sace X and X/O the orbit

space. Then

dimLX/0 ( dimLX.
A proof of 5.3 can be found in (1; p. 111].

5.4. Let S1 act on a connected compact Hausdorff

space X. Consider the (2N+l) - sphere

S - t(Zo , Z, ...( ZI)I L' .  1Zil=l-, Zi = complex

number for all i O 1, ... , } . The map

S x s2M+ --4 S 2 +l

(e 2 ei, (Z 0 s..,,)) -4 (e 21relZ o ,,, evrelzN)
0 * e 4 1, defines a free action of S1 on

S2 N + l for which the orbit space is the complex projective

N-space CP?. Let P: S -- ) CP1 denote the canonical

projection. Now let S1 act on the product space XxS
2n +l

diagonally by g(x,u) - (gx, gu), geS', x*X and uX 2N+l,

Denote the resulting orbit space by X., and the canonical

projection of XxS2N + l into X., by q, There are two canon-

ical maps r 1 : X8, -- * x/S' and T2 : X 5 , -4 CP such that

the following diagram
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1r T Pr

r Pr1 l P 2  2N+l PX/S'<-X+ xs + --- +S 2 I -- CP

is commutative, where Prl and Pr2 are the projections of

the product space XxS2N+l onto its first and second factor

spaces X and S2N+l respectively, The map r2 is a fib-

ring with fibre X for which the Leroy sheaf is constant

since CPN is simply connected. There is then a spectral

sequence (Er) whose E2 - term is given by

E ' t -H5 (CP ; It(X;L))

and whose E. - term is associated with H*(XS,;L). The
map w1 is in general not a fibring4 In fact, for each
y - v(x)eX/S,, we have r-1(y) = S2N+I/s . Finally we

remark that the cohomology ring of CPN is given by

(1) H*(CPN;L) - L[x/(zN+l), deg x - 2,

where L[z] is the polynomial ring with coefficients in L

and (xN+ ) is the ideal generated by XN+I
For details of the above, one may consult [1; Chap. iv,

1, 2 and 3] where the general case of compact Lie

groups is treated and with (10] and (8) where the specific
case of S' is discussed.

In later applications, we shall always assume that
X has finite cohomology dimension over L and that N
is chosen so that 2N+l >) dimLX. This convention will
be adopted from now on without further explanation (cf.

1; p. 52),
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Suppose S' acts on X freely, Then rTr (y) -
S2N+l for all y *X/S'. Since HI(S 2N+l ;L) - 0 for all

1 < k < 2N+1, by the Vietoris mapping theorem we have

rl*: 1H(X/s'; L) --* Hk(Xs,;L) is an isomorphism for

all 0 S k < 2N+l, We have therefore

5.5 Proposition. If S' acts freely on a connected

compact Hausdorff space X such that di\X <( a, then

for a sufficientl N there exists a spectral se(uence

(Er) whose E2 term is given b

E 5t H 8 (CPN; Ht(X;L))E2

and whose E., - term is associated with H* (X/S'; L) up

to dimLX.

More precisely, the last statement of 5.5 means that

there exists a suitable filtration on ri02 H(/S'; L)

whose associated graded group is given by Z s+t 0% t 2NE . "

We notice furthermore that for S <2N+1, the canonical edge

homomorphisms

S: EB --4' H (X/S'; L) and

: Hs s (X'S' L.) ---0 08

of (Er) are given by T1 *o2 and r respectively.

In the next section, we shall apply 5.5 to the

case where X is a cohomology k-sphere over L. There

is then the Gysin exact sequence
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Ira _E -- H'L-k,k ra +10E +1

2 8 XS;L ~E E2 b
S< 2N+l.

We remark that Ya is the multiplication by an element

a eHle+l (CPN;L) [2; Expose IX, th6or~me 81,

5,6 Let S' act on X with the action being not

necessarily free and let P be the fixed point set.

Considering F as a space acted on by S', we can form

and consider the maps r1: Fs' --- F/S' - F and 72:

FBI --4CP . It is easily seen that the space Fs, is

Just the product space ,xCP
N . since r1 and r2 are Just

the projections of FxCPN onto its factor spaces, the

spectral sequence of r 2 : FxcpN --4 CP N is of no interest.

On the other hand, the inclusion i: F --- X induces an

inclusion is,: F$, ---+x which in turn induces a

homomorphism i*,: H* (Xs,;L) --4H* (Fs,;L). It is

known (1; p, 55] that if dimLX<o , then is,:

Hk(Xs,;L) --+ Hk(FBs;L) is an isomorphism for all

dimLX < K 4 2N, provided that L is a field of character-

istic zero,

5.7 Proposition. Let X be a cohomology n-sphere

over L, where L is either Z or a field of characteristic

zero. Let S' act on X. Assume moreover that dimX<G
and that the orbit structure is finite. Then the fixed

point set F(S';,X) is a cohomology r-sphere over L for some

-1 4 r % n and n-r is even..

This result can be found in [1; p. 63).
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5.8 Let X be a cohomology n-sphere over L, where

L is a field of characteristic zero and let S'xS' act on

X. Assume moreover that dimjX,<0 and that the orbit

structure is finite, By 5.7, the fixed point set

F(S'xS';X) is a cohomology r-sphere over L. Moreover,

let -9 = {H IHCS'xS'l be the set of all closed sub-

groups of S'xS' which are isomorphic to S', Then each

F(H,X), HaR is a cohomology n(H) - sphere over L.

We have the following theorem due to A, Borel [1; p. 1751.

5.9. Provosition. Let the hypothesis and the 22A-

tions be the same as in 5.8. Then

n-r = EHeat (n(H) - r).
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Section 6, Cohomology Complex Projective Spaces

Throughout this section, X is a compact Hausdorff

space on which the circle group S' acts freely. As usual,

X/S' denotes the orbit space and T: X --- X/S' denotes

the canonical projection. We also agree that for the

rest of this paper, H*(X) denotes the integral Alexander.

Wallace-Spanier Cohomology of X. Whenever groups (rings

or fields) other than Z are used as coefficient groups,

they will be written out explicitly.

6.1 Definition. A compact Hausdorff space Y is

said to be a cohomolog complex projective n-space if

its integral cohomoligy ring H(Y) is given by

H*(Y) = [X 1/(xn+l), deg x = 2,

where Zxl is the polynomial ring with coefficients in Z

and (xn+l) is the ideal generated by xn+l

6.2 Proposition. If X Is an integral cohomology

(2n+l) - sphere such that dimlX(o , then X/S' is a

cohomology complex projective n-space,

Proof. Consider the spectral sequence (Er) of 5.5,

where we have

E It = H5 (CPN; Ht(X)).

Since X is an integral cohomology (2n+l) - sphere, by

5.5 we have the Oysin sequence

Es-2n-2,2n+l Ya Eso 0 s H s-2n-l,2n+l

• " 0(
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where a is the multiplication by a generator a H2n+2 (CPN),

From this exact sequence, it is immediate that

is an isomorphism for all 0 ( S 42n. For 2n < S < 2N+l,

we ,btain

Hes(X/S') - 0

by the fact that Y a is an isomorphism, For 2N+l f S,

we obtain

HI5(x/s') = 0

by the agreement that 2N+l >dimLX and 5.3. Finally,

as Os = r1*'10 2* commutes with cup-product, we

obtain the desired cohomology structure of H*(X/S') in

view of (1) of 5.4.

The next theorem is an analogue of 2.5.

6.3. Theorem. Suppose that S' acts freely on a

compact Hausdorff space X such that X/S' is a cohomology

complex proJective n-space. Assume moreover that dimX/St

< ,, and r*: H 2(X/S ' ) --- H 2(X) is trivial. Then X is

al, integral cohomology-(2n+l) nphere and dimX 4 a .

Proof. By a theorem of Gleason, (11], the system

x, X/S', S', r) forms a principal bundle; hence we have

dimLX <oa by 5.3. We can therefore consider the spectral

sequence (Er of 5.5, where we have

E 't = H(CPN; H (X))
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for a sufficiently large N.

By the universal coefficient theorem, it is easily

seen that for any coefficient group L,

H'(CPN ,, L) = {L, if S-2k, Ok $N;
0, otherwise.

(1) E"t = 0 for all odd S.2
We recall that E of is the graded ring associated

with a suitable filtration of H*(X/SI) and we suppose

that this filtration is given by a decreasing sequence

*(x/s) )slo of subgroups H*(X/S' )8 of H*(X/S);

i.e. H*(X/S')s+1 cH*(V/s'), for all S, H*(X/S)o

H*(YS') and H*(VS') - U 30 H*(X/S')a. Then we have

(2) Et - Hs+t(/s),/Hs+t(X/S)'

where Hk(X/s) - (V/S, ) n H*(X/S')5 " Moreover, in

the sequence

.5o 8 Y'S 0,s

where 4s and s are the edge homomorphisms, we have

(3) IM -a
m H(X/S')'

Ker (P = He(VS/s.

We now claim that

(i ) ismrhs o a S , 0 k

is an Isomorphism for all S - 2K9 0 .<k 14 n. Clearly
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0: EH'0  4 H°(X/S') is an isomorphism; hence (4)

is trivial if n=o. Consider the exact sequence of lower

terms (cf. (3) of 2.5)

1 0 1 101 4 20 A 2y---4 E2 P(-4 sP) E2 E2, H(x/s,).

Since H1(Y/s') - 0, this reduces to

o - 1 194 2 .0 04H2 ,

By (3), we have Im 42 = H2 ( X/ S ' )2 and Kor

H2(X/S')1. But H2 (X/S' )/H2 (X/S')2  E. = 0 because

E . 0 by (1). Hence Im X Kor 2 In other words,

the following sequence

(5)
a 2 0 2 W4'A 0,

S2

is exact. For n ) 0, we have H2(X/Ss) = Z by 6.1. By

5.5, the homomorphism (P 2 is Just Ti*: H(X/S' ) -+

H 2(X) which is trivial by assumption. Hence (5) reduces to

0o- -- 2z , z--+o
and this implies that 2,0 .H 2(X/S) is an

isomorphinm. Since
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(6)

~*90 Es' 40 ~nH"(CP NPHO(X)
''°  Sa E2 s 'oHcp'°:

f H(CPN) = H*(CPN)

and = i*_I oi2* (see 5.5) commutes with cup-

product, (4) follows from the ring structures of

H*(CPN ) and H*(VS ).

Relation (4) implies that none of the terms

ro s=2k, 0 : k < n have any non-zero cobounding

element for r , 2. In particular, we have

(7) d5: EOS  -+ E- s

is trivi.al for t,11 S-PK, I f K 4 n. Moreover, we have

E°O's= Hs(X/S' )/Hs(x/S' )l by (2) and Im 0 s = HS(x/

by (3). Hence (4) Imu.ies that HS(X/SI), - Hs(X/S')I-H8(X/S)

for S=2K, 1 4 K ( n. In other words, Eo = 0 for

all S - 2K, 1 .< K C n, Clearly we have also that

EO'5 - 0 for all odd s simply because H5 (X/S') -0

when s is odd, Thus we have
O'S

(8) E00 = 0 for all 1 f 8 S 2n,

Now we prove by induction that
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(9) Hs(X) = 0 for all 0 < s <2n+l.

If n=O, (9) is trivially true. So we assume that n ) 0.

By (k), 2 is an isomorphism; hence E=*1 = 0 from the

exactness of (5); i,e.

H'(X) - E 0.

2

Suppose that it has been proved that Ht (X) - 0 for

all 1 f i < B . S 2n. Consider the differentials

0 5 r,s-r'+l

dr: 0,5 --- + Er

Clearly d - 0 if r > s+l. If 1 < r < s+l, we have
l,~ s-r+l < s; hence Esr+l - J1(cpN;Hs-r+I(x)) . 0

by the induction hypothesis. Therefore dr: 3 ,.

Err, s-r+l is trivial since 4,s-r+l . 0. The only case

left for consideration is ds+i: E+1 -- E+l, If

8 if even, d l E,+ L .sl is trivial simply
bs+1 %+l +l

because M; hence Rs+lIO = 0. If a is wdd,
8+1

then s+1 f 2n and d E0 ' -4 E5+lDO is trivial
6+1: 8+1 5+1

according to (7). It follows that drt Er,- E-r+l

is trivial for all r > 2, Hence E0o 5  = E° '5  and by

(8) we have
HS(X) = E 0 ' = 0.

2
Next we shall prove that

(10) H 2n+(x) = Z.
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d2 
4,

If n=O, then (5) reduces to 0 - E '1 -- E2 E0.

Hence

2n+l 2,o
H (x) = H'(X) E = Z.

Suppose then that n > 0. Consider the differentials

dr: Eo,2n+l _ r,2n2-r r 2.

It is easily seen from (9), which has Just been proved,

that these differentials are all trivial except possibly

when r = 2n+2. Hence we have

Eo, 2n+l 0 2n+l a o,2n+l Eo 2n+l . 0

2 2n+2 2n+3 =

where the last equation holds because H2n+l (x/S') 0 0,

Similarly, we also have

E2n+2 , o .2n+2,0 _2n+2,0 . E2 fn+ 2 10 . 0.
2 = E2n+2 and E2n+3

But by definition

EO,2n+l = • - 2n+l d2n+2 2n+2,0) and
2n+3 = KerE2n+2 - 4 E2n+2 a

E2n+2,0 = E2n+2,0 / _0,2n+l d2n+2 2n+2,
2n+3  2n+2 / Im( 2 n 2  * O

It follows that d2n+2E 0,2n+l - 2n+2 is an

isomorphism and hence

2n+l 0 2n+l1 E0 '2n+l - E2 n+2 , 0  2n+20.ZH (X) = E2  = -2+2 = 2n+2 = E. 2,0 = z,

Up to this stage, the argument is quite the same as
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that used in 2.5. To determine the higher dimensional

groups, we have of course no special cohomology theory

available here. Instead, we propose to prove by induction

that

'11) H 2n+K (X) = 0 for all 2 9 K O diNX-2n.

Since H*(CPN) is torsion free, we can write E 2

H *(CP N;N*(X)) = H*(CPN) O*(X). We have just shown that

don= d E O,.n+l -+R22.ois an isomorphism

(for all n 0). This isomorphism can be described as

follows: Let a denote the generator of H2 (C9O) aid

1 denote the generator of Ho(CPN) as well as that of

H0(X). Consider the element a 0~ 1 * E2nK~, rgre
n2l regrde

as in E 2n+2,O Then there is an element b e H2 l+l(XW

such that the element 1O0 beE0.2n+1l osiee as in

E ,,2nl.has the property that dn+( 0b an+l1,

and 00is completely determined by e (1le b) =an+' * 1.

Let Z(Esst Ker(E~' B ~rt~) st

z(EsIt E be the canonical projection andrr+l r

Z(E5' ) --4 EsIt the inclusion. We agree that if we writer r
s,t E s~t -- then it is tacitly assumed that

r r r+11

Z(Es~t) = Es" Similarly, if we write j 8 t: Es4-.

E s~t ,then it. is tacitly assumed that Z(E s-rt+r-1
r 'r
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We observe that from (2) and 6.1, we have always

Est - 0 whenever s+t > 2n. All these will be used

from now on without further explanation.

From (1), (9), and (10), it is easily verified

that we have the following diagram when n ; O.

0,2n+2J2
2n+2 0,,2n+2 .,2n+2 E0 2n+2 E0 ,,2n+2 0= ln+ 3  2n go

j2 2, 2n+1

2,2n+1 P2 22nl? 2n+2 2,2n+l "'2 .2n+10E2  F 2n"2 n+2 + WEm =nId 2n+2

2n+4,o 2n4.,0

E2  -En+2

In this diagram, Kerd2 = Im j-2n+2 . O Define 02:

E2 '2n+l 2n+,O 2,2n+1 Then
E2 -E% by0 2 a d 2 n+2 0P 2  Tebecase erd ~ 2, 2n+1

because Ker'2n+2 0 0, we have Ker' -

2nr+2 2n+2

Kerp 2  = Imd 2 . In other words, the sequence

,0,2n+2 d2  0,2~ 2 2n4,,o

is exact. When n = 0, we define e2: E2 ' 1  , simply

as 02 = d2. Then it is directly verified that the above

sequence is also exact for n - 0, Now let us calculate
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e2(a S b). We first observe that 2or

n-O, this is trivial; for n > 0, this follows from (4).

Hence we may consider the element a S 1 e as_2,0
in F2n+2 Clearly we have d2n+2 (a @ 1) - 0. Hence

92(a b) ,, d2 +2 0 22n+1( (a 0 1)(1 S b)

• d2n+2 ( (a @ 1) PO2f+l(1 S b) )

a d2 n+2( (a l)(1 S b) )

- (a 0 1)d2n+2(l • b)

+ (dn2 (a @ 1) ) (1 4 b)

- (a . 1)(an+l * 1)

- an+2 a 1

if n ? 0 and

02(a B b) - d2 (a S b) - d2 ( (a 9 1)(1 S b) )

- (a 8 1) d2(l e b) + (d2(a S 1) )(1 S b)

- (a a 1)(a 0 1)

2
-a 2 l

if n=O. In both cases, this means that we have the

following commutative diagram
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O- , 2ni+2 d2,2n+l e2 2n+4,o

'a I e 1 I
0,2n "l 2n+2. 0

where : HC(cpN) H+ 2(cPN) is the multiplication
by a, Since Ya is an isomorphism, it follows that

02 is an isomorphism and hence, by the exactness of

the upper row, we have

H2n+2(X) - 0 0,2n+2 = 0,

Suppose it has been proved that H 2n+i (x) - 0, for

all 2 S. I < K, K S, dim X-2n. We consider two cases:

Case 1. K is even; say K - 2m. There are again three

cases:

(A) 1 < m < n+l. Then we have the following diagram

.-- ,, E-' ;'"'.2 E''' 0
E:,"- E. ' - E '; a..,.

E'"~~~~~~~~~ ... d," " " -2.1%4% " " " "
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In this diagram, define 6: E°O,2n+2i -k-2m 2n+1.a

e : E 12n, l + _ 2 n + 2 m 7+ 2D, 2 £ W b y S d 2 m a n d

m EE2 by em 2n+2 , .-m , 2n+l

2m,2+Then Ker h = Im -m0adKre e ~

Im 6 because Ker d2 n+2  Tm Jm2n,
a2n{2 - 0, moreover,

we have

Om(am 9 b) - d2 n+2 o 2m,2n+l( (am . 1)(1 * b)

= d2n+2 ( (am . 1) 0,02n+ll(1 S b) )

= dP,.2( (am 0 1)( S b) )

= (am 9 1)d 2 2(1 S b) + m(d2n+2(a 01) )(1 S b)

- (am @ 1)(an+l 0 1)

= a4 m+1 S 1.
-a

It follows that we have the following commutative diagram

0 2 n + 2 m - 2m2n+l em 2n+2m+2.0

0~ ~ ~ -4 E61_4E2E

EO0, 2 n+l E0 
2 n+2 ,,o

2 2

where the upper row is exact. Hence em must be an

isomorphism and therefore we have

H2n+K(X) E 0,2n+2m W 0.
H(X) E2 -0
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(B) n+l < m, Then we have the following diagram

E "'= * 3 ' ' e.-- *' ''* ,E ' e-- E Z,,., • - o

2 _1 2m,2n+

In this diagram, define A: E0, 2n+2m E 2

by A = 2m, 2n+l o d and e m,2n+
2n+2 d2m ad m 2

E2n+2m+2,O by Om = d2n+2. Just as in (A), we have the

following diagram

0 0, 2n+2m & 2m, 2n+l Ow. 2n+2m+2, 0E2 -z--# Eo,,+ E2,. +,

a M 0 1 0 6Yam 0 1

0,2n+l 0 2n+2,0

where the upper row is exact, Hence we conclude again

that
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H2n+K(x) = EO,2n+2m =

(C) n+1 = m. Then we have the following diagram

,'*i Z1,% II

E o +n,+1,"*+,,.,FE E 0,.%. " , "

L E 4

02n+2, 2n+1
In this diagram, detine S : 22  by

d 4n E n+2 a2n+2,2n+dand E2n+2 ,2n+1d2n+2: "2n+2 E 2n+2 an n+* : 2--

S4n4 o bd 2n+2,2n+l 41n4,o Then we2 by d2n+2: E2n+2  ,,+n+2o
have Im 6 Q Ker Fn+l and Ker Im J0 4n+2 . 0. Thisn+1 ~2n+2
time, we have the following commutative diagram

0,4n+2 2n+2,2n+l en+ 4n+4,O

ra I+. 1 an+ 61

002n+l e0  2n+2,0

where in the upper row, is a monomorphism and
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Im S c Ker en+.* But the commutativity implies that

e0n+ is an isomorphism; hence again we have H2 n+K(x) 
EO' 4n+2= 0.
2 -0

Case 2, K is odd; say K - 2m+l. Then we have

the following diagram

I---l d!h7 g:, 3%"'~'-:

We have Ker d2 n+2m+2  T m - 0 and+Im d

S2n+2m+2,0 2 4n+2 m+2 , 0
Pe 2n+2m+2 =2n+2m+2 " Hence d2 n+2m+2 is an

isomorphism. Define aw : Ayr% "*a.

-W 2n+2m+2,0 a 2m,2n+l=d 2 n+2m 2 oa2n+2  and era: 2 *

2n+2n+2,02by 2m- d m

E2n+2m+2,0 by m = d Then we have Im nGm
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Im d2 n+2 - Ker 2n+2m+2.O w Ker W , Clearly W is

an epimorphism. Hence

2n+l em 2n+2m+29O 0~ E 2n+2m+l-4
-4E 2 j--*E a-4

is exact. Moreover, it is easily verified that the

following diagram

'a m ' 1 tram ' 1

n,2n+l 0 +22,0
E~2 n -. E 2  ~ 1

is commutative. Hence @m is an isomorphism and we
have H2n+K(X) ,2n+2m+l - 0.

Finally we have

H 2n+K(X) . 0 for all K > dm&X-2n

by the definition of dimsX. This completes the proof

of 6,3.



52

Section 7. Lifting of an action in a principal bundle

(XYS'r)

Given a connected compact Hausdorff space Y and a
non-zero element G H'(Y;Z p), we have described in

Section 3 how a cohomology covering space X with respect

to 4 can be constructed and also how a prescribed

action of Z on Y can be lifted to an action of ?p

on X In such a way that it commutes with the deck

transformation on X. Tn this section we shall treat

the corresponding problem when Zp is replaced by S',

This can be formulated as follows, Given a compact

Hausdorff space Y and an element ao 0 H2(y), does

there exist a principal bundle (X,Y, S',T) such that

* : H (Y) -+ H 2(X) maps a. into zero? Moreover, if

a prescribed action of S' is given on Y, can this

action be lifted to an action of S' on X in such a way

that each g * S' gives a bundle automorphism of X? The

next proposition answers the first part of the questions

7,1. Proposition. Let Y be a compact Hausdorff

space and ao an element of H2 (y). Then there exists

a principal bundle (XY,S',T) with compact Hausdorff

total spac X suvh that *: H2 (Y) -- + H2(X) maps o

into zero.
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Proof. We can represent Y as the inverse limit of an

inverse system f'Ym' #Mm I of triangulable spaces [9;

p.284], i.e. Y - , im 'm' ml'}, where each Ym is a

mfinite simplicial complex. Let q5 m: Y --4 Tm be

the projection. Then we have a system 0 m*: H2 (Ym)

-4 H2 (Y) of homomorphisms which defines a homomorphism

* : 2 H2(YM), m',* -i H2(Y) from the direct

limit of the direct system JH2(Ym), '"**I into 02(y).

By the continuity theorem, we know * is an isomorphism,

Hence there exists an index m and an element am e H2 (y.)

such that Om*(am) = a . Consider the bundle

(S 2N + , CPN, So, P) (cf. 5.4), where N is chosen so that

2N+l > dim Ym (dim Ym means the dimension of the

simplicial complex Ym). Prom the homotopy sequence

of this bundle, (13; P. 152], it is easily seen that

0; if 0 < n < 2

T n(CPN  Z; if n-2

0; if n C 2 < 2N+l

where r n(CPN) denotes the n-th homotopy group of CPN.

In particular, CPN is n-simple and H n+l(Ym.rn(CPN) ) = 0

for all 2 < n < dim Ym, [13; p. 132]. Hence according

to the obstruction theory, (13; p. 192], there exists a
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map g: Ym -- + cPN such that g*(a) = am, where a

denotes the generator of ?f(cpN), Let f: Y -- CPN

be defined as f = g o 0 m. Then we have f*(a) - a0.

Let (XY,S',) be the principal bundle over Y induced

by f; that is, X= &y,u) yeY, u&S 2 N+I1 f(y) - p(u)}

CYXS2 N+1 and r: X -- Y is given by w(yu) - y. Define

it: X ---. S 2 N+  by h(y,u) - u. Then we have the

following commutative diagram

X --h S2 N+l

CP
N

which in turn gives the following commutative diagram for

cohomology groups

H2 (X) H - 2 (S23+1 ) 2 0

r* T p *

H 2(Y) j - H2(cPN)

Therefore

r*(a o )0, * o f*(&,) - h* o p*(a) - h*(O) - 0.
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7.2 Let (X,Y,S',tr) be a principal bundle where thi

base space Y is compact Hausdorff. We may regard the

structure group SO as a transformation group acting on

X freely with Y as the orbit space and r: X --4 Y as

.m 'nonical projection. Denote this action by S,

i.e. 0: S'xX -- X is a map satisfying

0(g 13,(g 2 x) ) - P(gg 2,x) for all g91 g 2 e S',x 6 x,

A(e,x) = X for all x e X, e = identity of 0.

Suppose we have an action a: S'xY -*- of S' on Y.

Then by a bundle lifting of 3. we mean an action a:

S'xX- X of S' on X such that

(i) r o a(g,x) - &(g,T(x)) for all g s', x e X,

(ii) ~(g1, 1(g29 x) ) 0 (g2, a(glsx) )"

In other words, a makes T an equivariant map and a

commutes with the action of the structure group. We

shall now study the question of the existence of a

bundle lifting for a given action 5 of S' on

the base space Y. This question has been studied in

(19] under a more general situation by TE. Stewart.

The following lemma is a slight modification of his

result and its proof is entirely the same as that
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used in (19]. Hence we shall only sketch its main idea.

7.3. Lemma. Let (XY,S',r), a and I be the
same as in 7.2, Then there exists a neighborho. d V of

the tdentity e 4 S' and a map a's VxX ---* X satisfying

(1) (1) a'(g1 ,a'(g2 , x) ) = a'(g1g 2 ,x) for all

g1 0 g20 gg 2 
& VP x X,

(ii) a'(e,x) - x for all x & X,

(iii) a'(g 190(g2,x) ) - 0(g2 ,0'(glx) for all

91 e V- g2 e S', X X,

(iv) T o a'(gl,x) a (gl,,(x) ) for aLl g1 ' V. x * X.

Proof. For convenience, denote i(g,y) by gey for

g e S' and y a Y. Choose a neighborhood U of e homeo-

morphic to the unit interval. The identity map ae: X--- X

is clearly a bundle map and the restriction of 3 on

UxY is a homotopy of the induced map of ae. Since Y

is compact Hausdorff, we can apply the first covering

homotopy theorem, [18; p. 50]. This gives a map a:

UxX - X satisfying all conditions of (1) (with V

replaced by U) except possibly (I). Choose V homoo-

morphic to the unit interval such that CU and define

the error function (cf, 19) f: VxVXY --- S' by the

equatic

(2) a( g1g 2 ,x) - 13(7(g 1 ,g 2,.r(x) ), a(gl,a(g2 ,x) ) ).
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By the associative law of the multiplication in S',

we have

(3) ?(1,92,' g3 y)'lf(g2,g3,y)f(glg 2 g3,y)?(g1g2g3,y) "1 - e.

Let R be the group of real numbers and Tg R --4 S' be

the exponential map defined by 0(t) - e 2 rti, t a R. The

map ? is a homotopy of the map T o f : VxY ---4S'

where fo: VXY -+ R is the map defiped by fo(g,y) - 0,

Hence we can apply the second covering homotopy theorem,

[18; p. 54). This gives a map f: VXVXY -- * R satisfying

f(e,g,y) - 0

and f is unique since R is the universal covering group

of S'. The uniqueness of f implies that f satisfies the

equation

(4) f(g 2 ,g3,y-f(glg 2 ,g3,y)+f(gl,g 2 g3,y)-f(g 1 g 2 ,g 3 ,y) - O,

Let

.1 -. 1
(5) P(g1 #g2 ,g3)(y) - f(91 ' g 2 og2"lg3,gI Y),

By (4), we have

(6) P(g 2 , 39,g 4 )(y)-P(gl,g3,g 4 )(y)+P(g1 ,g 2
' g 4 )(y)

-P(g1,g29g3 ) (y) - 0.
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Let C(YOR) be the space of all continuous real valued

functions on Y endowed with the compact open topology; or

equivalently, C(YOR) has the usual norm topology since

Y is compact, Then P can be regarded 4e a continuous

function defined on some neighborhood of the diagonal

of S'xS'xSI taking values in C(Y,R) and satisfying (6),

Since C(Y,R) is a metrizable absolute retract, (13, p, 201,

we may assume that P ir defined on all of S'xS'xS', i~eq

P: S'xS'xS' -- C(YIt) Is a map, Let A n(S'sC(YR) )
be the sheaf of germs of continuous Alexanl.er-Spanier

n-cochains with coefficients in C(Y*R), Then

A (st $c(Y,n) ) -fA n(St "C(yj)) is a soft resolution

(12] of the constant sheaf C(Y,R) over S' (of. 19).

Since H 2(S',C(Y,R) )-0, there exists a continuous
function Q: S'xS' -4C(Y,R) such that

(7) P(glg 2 Ag3) - Q(g 2 1 g 3 )mQ(gl1 g3)+Q(g1 ,g 2 )

on a neighborhood of the diagonal of S'xS'. DefineQ:

S IxS' --* C(Y* R) by

Q'(g, 9 2 )(y) = JsQ(89lgg2 )(g-y )dg,

where the integral is taken with respect to the normalized

Haar measure of 5'. Then we have

(8) Q'(gg119 g2)(g-y) - Q'(g 11g92)(y)
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and (7) is still true when Q is replaced by . ow

define

h(gy) - Q'(eg)(g.y).

Since Y is compact, h is simultaneously continuous in

both variables, (4; Chap. X, p. 24]. By (8), (7) and (5),

it is easily verified that

(9) f(g142,y) - h(g2ey)+h(glg2 -y)-h(glg2 &y).

Pinally, define ': VXX r-4 X by

a.(g,x) - 0(9 o h(gx), a(g,x) ).

Then by (9) and (2), it is directly verified that a'

satisfies (i) - (iv) of (1).

7,4. Propoettion. Let (X,Y,S',r) be a principal

bundle and 3: SIY' --* Y an agtion of S' on Y. Assume

that Y is compact Hausdorff and H'(Y) - 0. Then there

exists a bundle lifting at StXX --0 X 2 z

Proof. As before, we let P: S'xX -+ X denote the

action of the structure group S' on X and 9: P,-4 S' denote

the exponential map. We shall first define an action of

R on X. Let H (XOX) be the group of all hwmeomorphisma

of X onto itself endowed with the compact open topology.

Since X is clearly compact Hausdorff, R (XX) is a

topological group (18; p. 20] and an action of R on X is
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equivalent to a continuous homomorphism or Rt into

H (XoX). By 7.3, there exists a neighborhood V or

the identity e G SO and a map aO: VxX --- X satisfying

(1) or 7.3 -We may assume that V is small enough

so that there exists a neighborhood W or oe Rt such

that W is mapped homeomorphirally onto V by 4p, Hence

a' may be considered as being defined on W, Moreover,

equations (i) and (it) of (1) of 7.3 imply that a' is

a local homomorphism of Rt into 1fl(XOX). Since Rt is

simply connected, a' can be extended to a continuous

homomorphism of Rt into W (X,X), (6; p. 49)]. In

other words, we have a map W': ftXX --+ X satisfying

()(i) al(t 1 ,a'(t21x1) - 0'(tl+t2,x) for all

t11 t2 e * n x 0 X,

(it) a'(o,x) - x for all x a X,

(Ill) T o at(t,x) - Fi(ip(t), Tr(x) ) for all t & R. x~ X#

(iv) a(t, P(qp(S),X) ) - ft(4(S)oa(toX) ) for all

to S a no x 6 X.

For every y & Y and x 6 rw (y), we have T o a'(0,x)

y = yro a' (l.x), Hence there exists a unique element

g(y) 6, S' such that

(2) a'(O,X) - P(g(y), cz'(lX) ), y - Y(x).
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It is easily verified that y --4 g(y) defines a map

g: Y- S' which satisfies

(3) g(&(q,(t),y) ) - g(y) for all t * R, y 6 Y.

Let r'(Y) be the Bruschlinsky group [13; p. 48] of Y.

It is known [13; p. 59] that wD(Y) and H'(Y) are

isomorphic; hence 'r'(Y) - 0 by our hypothesis. There-

fore g is homotopic to zero. Since Y is compact, by

the second covering homotopy theorem (of. 7-3)

there exists a map h: Y - R such that g - T o h.

Define a": RxX --* X by

(4) c&"(t,x) = ft(ip(th(T(x) ) ), a'(t,x) ).

Then it is easily verified that a" satisfies (ii),

(iii) and (iv) of (1), To verify (i) of (1),

we let y - r(x), and obtain

a" (tla"(t2 ,x) -a'(t 1 20(qp(t 2h(y) ), a'(t 2, x) ) )
-1(T(tl h([(V(t 2)97 ) ) )s a'(t 1 s

13(42 h(y) ), 6(t2,x) ) ) )

-P(9(tlh(y) ), p((t 2h(y), a'(t 1 ,a'(t 2,x))))

= P(T(tl+t 2 )h(y)),g'(tl+t2 ,x) )

Mr e (t ( +t2,x),
Moreover, by (2), we have
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a"(O,x) P (4p(oh(y) )p a'(o~x) -a'(osx) and

at cgw(X) -a"(x)

It follows that a: S'xX - X given by

cz(q(t).,x) - a"l(t..x)

is a well-defined action of so on X which to a bundle

lifting or S.



Section 8, Actions of S' on cohomology complex projective

spaces,

We now turn to the action of the circle group on

a cohomology complex projective space Y. As in

Section 4, our final goal will be the determination

of the cohomology structure of the fixed point set. The

result we shall obtain here is however less general

than that given in Section 4, in the sense that a

stronger hypothesis will be imposed. In fact, we

shall assume that Y is of finite cohomology dimension

and that the action has finite orbit structure. Whether

these unwelcome conditions can be removed is unknown

to the author.

We first prove a proposition that will be used in

the proof of the main theorem and which is also

interesting by itself:

8.1. Proposition. Let S' act on a cohomolog

complex projective n-space Y such that dimLY-

Then the fixed oi set F is non-empty and F has at

most n+l components.

Proof. Consider the spectral sequence (Er) or

the fibring r2 : YS' --- CPN of 5,4 with the field of

rationals Q as coefficient group and where N is so chosen

that 2N+l > dim.Y. We have

E 8 t = HS(CPN;Ht(Y;Q) )

63
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and the E,, -term is associated with H (YS,;Q). BY

the universal coefficient theorem, it is clear that

H*(Y;Q.) - QIX]/ (xn+ )o deg x - 2,

where Gixi is the polynomial ring with coefficients in

Q and (x l+1) is the ideal generated by x n+l.  It follows

that we have Esot = 0 when either S or t is odd. Iftha te have~l

a and t are both even, we have dr: , __) +r, t+-r

is trivial for all r P 2 since at least one of s+r or

t+l-r is odd for any r 4 2. It follows that the

spectral sequence (Fr) is trivial and we have

di L4K dim L LK dim e o

dimsw 8-0~'-80 m 2

This relation determines H*(YS,;Q) immediately as

O if K is odd,

(I) m+l if K - 2m, 0 m 4 n,

dim HJ(yS,;Q) - n+l if K - 2m, n m 4 N,

n-(m-N)+l if K - 2m,

N 4 m f N+n,

0 if K - 2m, N+n< m.

Suppose that P = *. Consider the map 71:

YS, --- Y/S' of 5.4. For each Z = w(y) e Y/S', where

r: Y ---. Y/S' is the canonical projection, we have

S1 (Z) = S 2N+I/Sy, where S'y is the isotropic subgroup
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at y * Y. Since F - , S'y is a finite group and it

is known that Hk(S2N+I/S'y;Q) = 0 for all 1 4 K 4 2N,

(cf. 1; p. 54). Hence by the Vtetoris mapping theorem,

1 *: Hk(Y/S ;Q) >Hk (Ys,;Q) is an isomorphism for all

O K - 2N. In particular, take K even such that

dimY< K 2N, Then by (1) we have Hk(Y/S';Q) , o.

On the other hand, by 5.2 and 5,3, we have dimQY/S'

dimzY/S'< dimzY. This gives a contradiction.

Since dim Y <,, , by 5.6 we have is,*. H:(ya,;Q)
Q

k ( S' ; Q) _- yoK HK-S(cPN) * HS(F,Q) is an

isomorphism for all dim Y < K 4 2N. Take K - 2m such

that dimQy < K $ 2N. Then by (1) we obtain dim H°(P;Q)4

n+l, which proves our assertion.

Now we present the main theorem of Part 2 of this

paper,

8.2. Theorem. Let S' act on a cohomology complex

proJective n-space Y. Suppose that dimz . and that

the orbit structure is finite. Then the fixed point

set F Is non-empty and P has at most n+l components

C1 ,. • ., C , k 6 n+l, where each C. is a cohomology

complex projective n1 -space for some ni , I - 1,2,...,

K, and

(1) -K ni = n-K+l.

Proof. We have already proved in 8,1 that F 4
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and that F has at most n+l components, Let C 1 *6..

CK(K .4 n-i-) be the components on F. It remains to

show that each C Iis a cohomology complex projective

nj-space for some n1i and equation (1) holds.

Let a 0  H2(Y) be a generator of H2(Y). By

7.1 and 6.1, there exists a principal bundle (XpYpS!,Tw)

with Y as base space such that IT: H2 (Y) --- H 2(X)

is trivial. Let 0: S'xX --p X denote the action of

the structure group S' on X, Then the action 0 is free,

Since X is obviously compact Hausdorff, by 6.3 we

know that X is an integral cohomology (2n+l)-sphere.

* Let 3: S'xY -~Y denote the given action of St on Y.

Since H'(Y) - 0, r has a bundle lifting a according to

7.4t. Since a commutes with 0. the map Y: (S'xS$)xX

-- X given by

Y((9 1 '92)1 x) = a(gl#P(g2 P1 )-, g1092 4L 5' x & X

defines an action of StxS1 on X. Clearly, If has no

fixed point.

We claim that the action Y has finite orbit struc-

ture. Take any x * X and let y = w(x). Suppose that

(g#9 2) re Gx c S'xS'. Then we have iT o T( (g 1,g2),x)
rT 0 a(g15 P(g,.x)) = 3(gl1y) - y, Hence g, a y , where

*G c~ S' is the isotropic subgroup at y under the action

3., We consider two cases:
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Case 1. St e 3'. Then Qy is a finite cylic group,

say of order K. Let go be a generator of , We have

l g:0  for some 0 C I < K. Since 3(gosy) - y,
there exists a unique go' a S' such that 1(go"o

a(g01x)) = Y From this w. _* i.'K - e. Hence there

exists some 0 I mo < K such that go r g0
O. Now

x - a(g 1 ,(g 2,x) ) - a(go , A(g2 ,x) ) - 0(go",x) .

p(g2go" AmOox). Hence g 2 " go iho so that every element
Of O is of the form (g A go eO) fore 0 K

X0 0

Clearly every element of this form is also in O Thus

we have shown that ax - y x N where NY is a subgroup

of y. As there are only a finite number of 0 of finite order

and of them they have only a finite number of subgrowe,

the number of Ox which are of the form 0yXNy with 0y of

finite order are finite.

Case 2. 0 y S', i1 e, y r P. For each g * St, there

exists a unique S O S' such that P(La(gx)) - X. It is

easily seen that the correspondence g --+I is a continuous

homomorphism of S' into S', i.e. an element of the dual

group S' = Z of S' Hence it must be of the form g oKy

where Ky is an integer depending only on y - T(X). The

set {(ggKY)lg e Sj is a subgroup H(Ky) of S'xS' and one

can see that Gx is actually equal to it. The correspondence

y --+ Ky defines a function K: F --+ Z. Using the

continuity of Y it is readily verified that K is
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continuous on F. It must then be constant on each

component Cl of F. Hence we can define H, - H(Ky),

y aC i, i - 1,2,...,K. Each ax which is not of the

furm given in case 1 must be one of the H., Hence

again there is only a finite number of ax of this kind.

Now each H, is a circle group and the restriction

of V on Hi x X defines an action of Hi on X which

obviously has finite orbit structure. Moreover, we have

dimzX <o by 6.3. Hence by 5.7, the fixed point set

F(Hi;X) - Fi C X is an integral cohomology mi-sphere

for some odd mI, say mi -2ni+lt It is easily verified

that Fi = r 1 (Ci) and that 0: S'xFi ---* FP defines

a free action of S' on Fi . By 5.2, we have dimzF I

dimzX < w . Hence by 6.2, CI is a cohomology complex

projective ni-space.

We remark that S'xS' may contain subgroups N isomor-

phic to S' other than these H is, but none of them can

have a fixed point. In fact, i2 x a F(N;X), we have

ax = N so that N would be one of the HI. We now apply

the theorem of Borel given in 5,9. Since we know dimQ X

< s , Y has finite orbit structure and each Fi is a

cohomology (2n +])-sphere over Q. By the remark Just made

and the fact that I' has no fixed point, this would give

(2n+l) - (.1) - K [(2n +l) - (-1)]

which reduces exactly to (1).


